398

Примечания к «Анти-Дюрингу»

О прообразах математического бесконечного в действительном мире 279

К стр. 17–18 *: Согласие между мышлением и бытием. —
Бесконечное в математике

Над всем нашим теоретическим мышлением господствует с абсолютной силой тот факт, что наше субъективное мышление и объективный мир подчинены одним и тем же законам и что поэтому они и не могут противоречить друг другу в своих результатах, а должны согласоваться между собой. Факт этот является бессознательной и безусловной предпосылкой нашего теоретического мышления. Материализм XVIII века вследствие своего по существу метафизического характера исследовал эту предпосылку только со стороны её содержания. Он ограничился доказательством того, что содержание всякого мышления и знания должно происходить из чувственного опыта, и восстановил положение: nihil est in intellectu, quod non fuerit in sensu 280. Только новейшая идеалистическая, но вместе с тем и диалектическая философия — в особенности Гегель — исследовала эту предпосылку также и со стороны формы. Несмотря на бесчисленные произвольные построения и фантастические выдумки, которые здесь выступают перед нами; несмотря на идеалистическую, на голову поставленную форму её результата — единства мышления и бытия, — нельзя отрицать того, что эта философия доказала на множестве примеров, взятых из самых разнообразных областей, аналогию между процессами мышления и процессами природы и истории — и обратно — и господство одинаковых законов для всех этих процессов. С другой стороны, современное естествознание расширило тезис об опытном происхождении всего содержания мышления в таком смысле, что совершенно опрокинуты были его старая метафизическая ограниченность и формулировка. Современное естествознание признаёт наследственность приобретённых свойств и этим расширяет субъект

* См. настоящее издание, стр. 34–35. Ред.

399

опыта, распространяя его с индивида на род: теперь уже не считается необходимым, чтобы каждый отдельный индивид лично испытал всё на своём опыте; его индивидуальный опыт может быть до известной степени заменён результатами опыта ряда его предков. Если, например, у нас математические аксиомы представляются каждому восьмилетнему ребёнку чем-то само собой разумеющимся, не нуждающимся ни в каком опытном доказательстве, то это является лишь результатом «накопленной наследственности». Бушмену же или австралийскому негру вряд ли можно втолковать их посредством доказательства.

В помещённом выше сочинении * диалектика рассматривается как наука о наиболее общих законах всякого движения. Это означает, что её законы должны иметь силу как для движения в природе и человеческой истории, так и для движения мышления. Подобный закон может быть познан в двух из этих трёх областей и даже во всех трёх без того, чтобы рутинёру-метафизику стало ясно, что он имеет дело с одним и тем же законом.

Возьмём пример. Из всех теоретических успехов знания вряд ли какой-нибудь считается столь высоким триумфом человеческого духа, как изобретение исчисления бесконечно малых во второй половине XVII века. Если уж где-нибудь мы имеем перед собой чистое и исключительное деяние человеческого духа, то именно здесь. Тайна, окружающая ещё и в наше время те величины, которые применяются в исчислении бесконечно малых, — дифференциалы и бесконечно малые разных порядков, — является лучшим доказательством того, что всё ещё распространено представление, будто здесь мы имеем дело с чистыми «продуктами свободного творчества и воображения» ** человеческого духа, которым ничто не соответствует в объективном мире. И тем не менее справедливо как раз обратное. Для всех этих воображаемых величин природа даёт нам прообразы.

Наша геометрия исходит из пространственных отношений, а наша арифметика и алгебра — из числовых величин, соответствующих нашим земным отношениям, т. е. соответствующих тем телесным величинам, которые механика называет массами, как они встречаются на Земле и приводятся в движение людьми. По сравнению с этими массами масса Земли является бесконечно большой и трактуется земной механикой как бесконечно

* Т. е. в «Анти-Дюринге» (См. настоящее издание, стр. 145). Ред.

** См. настоящее издание, стр. 36. Ред.

400

большая величина. Радиус Земли = ∞, таков принцип всей механики при рассмотрении закона падения. Однако не только Земля, но и вся солнечная система и все встречающиеся в ней расстояния оказываются, со своей стороны, опять-таки бесконечно малыми, как только мы переходим к тем расстояниям, которые имеют место в наблюдаемой нами с помощью телескопа звёздной системе и которые приходится определять световыми годами. Таким образом, мы уже имеем здесь перед собой бесконечные величины не только первого, но и второго порядка, и можем предоставить фантазии наших читателей, — если им это нравится, — построить себе в бесконечном пространстве ещё и дальнейшие бесконечные величины более высоких порядков.

Но согласно господствующим теперь в физике и химии взглядам, земные массы, тела, с которыми имеет дело механика, состоят из молекул, из мельчайших частиц, которые нельзя делить дальше, не уничтожая физического и химического тождества рассматриваемого тела. Согласно вычислениям У. Томсона, диаметр наименьшей из этих молекул не может быть меньше одной пятидесятимиллионной доли миллиметра 281. Но даже если мы допустим, что наибольшая молекула достигает диаметра в одну двадцатипятимиллионную долю миллиметра, то и в этом случае молекула всё ещё остаётся исчезающе малой величиной по сравнению с наименьшей массой, с какой только имеют дело механика, физика и даже химия. Несмотря на это, молекула обладает всеми характерными для соответствующей массы свойствами; она может представлять в физическом и химическом отношении эту массу и, действительно, представляет её во всех химических уравнениях. Короче говоря, молекула обладает по отношению к соответствующей массе совершенно такими же свойствами, какими обладает математический дифференциал по отношению к своей переменной, с той лишь разницей, что то, что́ в случае дифференциала, в математической абстракции, представляется нам таинственным и непонятным, здесь становится само собой разумеющимся и, так сказать, очевидным.

Природа оперирует этими дифференциалами, молекулами, точно таким же образом и по точно таким же законам, как математика оперирует своими абстрактными дифференциалами. Так, например, дифференциал от x3 будет 3x2dx, причём мы пренебрегаем 3xdx2 и dx3. Если мы сделаем соответствующее геометрическое построение, то получим куб, длина стороны которого x увеличивается на бесконечно малую величину dx. Допустим, что этот куб состоит из какого-нибудь легко

401

возгоняемого химического элемента, скажем, из серы; допустим, что поверхности трёх из его граней, образующих один угол, защищены, а поверхности трёх других граней свободны. Если мы поместим этот серный куб в атмосферу из паров серы и в достаточной степени понизим температуру этой атмосферы, то пары серы начнут осаждаться на трёх свободных гранях нашего куба. Мы не выйдем за пределы обычных для физики и химии приёмов, если, желая представить себе этот процесс в чистом виде, мы допустим, что на каждой из этих трёх граней осаждается сперва слой толщиной в одну молекулу. Длина стороны куба x увеличилась на диаметр одной молекулы, на dx. Объём же куба x3 увеличился на разность между x3 и x3 + 3x2dx + 3xdx2 + dx3, причём мы с тем же правом, как и математика, можем пренебречь dx3, т. е. одной молекулой, и 3xdx2, т. е. тремя рядами, длиной в х + dx, линейно расположенных молекул. Результат одинаков: приращение массы куба равно 3x2dx.

Строго говоря, у серного куба не бывает dx3 и 3xdx2 , ибо две или три молекулы не могут находиться в одном и том же месте пространства, и прирост его массы поэтому точно равен 3x2dx + 3xdx + dx. Это объясняется тем, что в математике dx есть линейная величина, но таких линий, не имеющих толщины и ширины, в природе самостоятельно, как известно, не существует, и, следовательно, математические абстракции имеют безусловную значимость только в пределах чистой математики, А так как и эта последняя пренебрегает 3xdx2 + dx3, то здесь не получается никакой разницы.

Точно так же обстоит дело и при испарении. Когда в стакане воды испаряется верхний слой молекул, то высота всего слоя воды x уменьшается на dx, и дальнейшее улетучивание одного слоя молекул за другим фактически есть продолжающееся дальше дифференцирование. А когда под влиянием давления и охлаждения горячий пар в каком-нибудь сосуде снова сгущается, превращаясь в воду, и один слой молекул отлагается на другом (причём мы вправе отвлечься от усложняющих процесс побочных обстоятельств), пока сосуд не заполнится доверху, то перед нами здесь имеет место в буквальном смысле интегрирование, отличающееся от математического интегрирования лишь тем, что одно совершается сознательно человеческой головой, а другое бессознательно природой.

Но процессы, совершенно аналогичные процессам исчисления бесконечно малых, имеют место не только при переходе из жидкого состояния в газообразное и наоборот. Когда движение массы как таковое прекратилось в результате толчка

402

и превратилось в теплоту, в молекулярное движение, то что же произошло, как не дифференцирование движения массы? А когда молекулярные движения пара в цилиндре паровой машины суммируются в том направлении, что они на определённую высоту поднимают поршень, превращаясь в движение массы, то разве они здесь не интегрируются? Химия разлагает молекулы на атомы, величины, имеющие меньшую массу и протяжённость, но представляющие собой величины того же порядка, что и первые, так что молекулы и атомы находятся в определённых, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим в них атомным весам. Химия оперирует такими дифференциалами, взаимоотношение величин которых известно.

Но атомы отнюдь не являются чем-то простым, не являются вообще мельчайшими известными нам частицами вещества. Не говоря уже о самой химии, которая всё больше и больше склоняется к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, являющийся носителем светового и теплового излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся как d2х к dx. Здесь, таким образом, в принятых в настоящее время представлениях о строении материи мы имеем перед собой также и дифференциал второго порядка, и ничто не мешает каждому, кому это доставляет удовольствие, предположить, что в природе должны быть ещё также и аналоги для d3x, d4x и т. д.

Итак, какого бы взгляда ни придерживаться относительно строения материи, не подлежит сомнению то, что она расчленена на ряд больших, хорошо отграниченных групп с относительно различными размерами масс, так что члены каждой отдельной группы находятся со стороны своей массы в определённых, конечных отношениях друг к другу, а к членам ближайших к ним групп относятся как к бесконечно большим или бесконечно малым величинам в смысле математики. Видимая нами звёздная система, солнечная система, земные массы, молекулы и атомы, наконец, частицы эфира образуют каждая подобную группу. Дело не меняется от того, что мы находим промежуточные звенья между отдельными группами: так, например, между массами солнечной системы и земными массами

403

мы встречаем астероиды, — из которых некоторые имеют не больший диаметр, чем, скажем, княжество Рейс младшей линии 282, — метеориты и т. д.; так, между земными массами и молекулами мы встречаем в органическом мире клетку. Эти промежуточные звенья доказывают только, что в природе нет скачков именно потому, что она слагается сплошь из скачков.

Когда математика оперирует действительными величинами, она тоже без дальних околичностей применяет это воззрение. Для земной механики уже масса Земли является бесконечно большой; в астрономии земные массы и соответствующие им метеориты выступают как бесконечно малые; точно таким же образом исчезают для неё расстояния и массы планет солнечной системы, лишь только астрономия, выйдя за пределы ближайших неподвижных звёзд, начинает изучать строение нашей звёздной системы. Но как только математики укроются в свою неприступную твердыню абстракции, так называемую чистую математику, все эти аналогии забываются; бесконечное становится чем-то совершенно таинственным, и тот способ, каким с ним оперируют в анализе, начинает казаться чем-то совершенно непонятным, противоречащим всякому опыту и всякому смыслу. Те глупости и нелепости, которыми математики не столько объясняли, сколько извиняли этот свой метод, приводящий странным образом всегда к правильным результатам, превосходят самое худшее, действительное и мнимое, фантазёрство натурфилософии (например, гегелевской), по адресу которого математики и естествоиспытатели не могут найти достаточных слов для выражения своего ужаса. Они сами делают — притом в гораздо большем масштабе — то, в чём они упрекают Гегеля, а именно доводят абстракции до крайности. Они забывают, что вся так называемая чистая математика занимается абстракциями, что все её величины суть, строго говоря, воображаемые величины и что все абстракции, доведённые до крайности, превращаются в бессмыслицу или в свою противоположность. Математическое бесконечное заимствовано из действительности, хотя и бессознательным образом, и поэтому оно может быть объяснено только из действительности, а не из самого себя, не из математической абстракции. А когда мы подвергаем действительность исследованию в этом направлении, то мы находим, как мы видели, также и те действительные отношения, из области которых заимствовано математическое отношение бесконечности, и даже наталкиваемся на имеющиеся в природе аналоги того математического приёма, посредством которого это отношение проявляется в действии. И тем самым вопрос разъяснён.

404

(Плохое воспроизведение тождества мышления и бытия у Геккеля. Но и противоречие непрерывной и дискретной материи; см. у Гегеля) 283.


* * *

Лишь дифференциальное исчисление даёт естествознанию возможность изображать математически не только состояния, но и процессы: движение.


* * *

Применение математики: в механике твёрдых тел абсолютное, в механике газов приблизительное, в механике жидкостей уже труднее; в физике больше в виде попыток и относительно; в химии простейшие уравнения первой степени; в биологии = 0.

О «механическом» понимании природы 284

К стр. 46 *: Различные формы движения и изучающие их науки

С тех пор как появилась эта статья («Vorwärts» от 9 февраля 1877 г.) **, Кекуле («Научные цели и достижения химии») дал совершенно аналогичное определение механики, физики и химии:

«Если положить в основу это представление о сущности материи, то химию можно будет определить как науку об атомах, а физику как науку о молекулах; и тогда сама собой напрашивается мысль выделить ту часть современной физики, которая занимается массами, в особую дисциплину, оставив для неё название механики. Таким образом, механика оказывается основой физики и химии, поскольку та и другая, при рассмотрении определённых сторон явлений и особенно при вычислениях, должны трактовать свои молекулы и, соответственно, атомы как массы» 285.

Эта формулировка отличается, как мы видим, от той, которая дана в тексте и в предыдущем примечании ***, только своей

* См. настоящее издание, стр. 66. Ред.

** Т. е. VII глава первого отдела «Анти-Дюринга». Ред.

*** Т. е. в тексте «Анти-Дюринга» и в примечании «О прообразах математического бесконечного в действительном мире» (см. настоящее издание, стр. 66 и 398–404). Ред.

405

несколько меньшей определённостью. Но когда один английский журнал («Nature») придал вышеприведённому положению Кекуле такой вид, что механика — это статика и динамика масс, физика — статика и динамика молекул, химия — статика и динамика атомов 286, то, по моему мнению, такое безусловное сведе́ние даже и химических процессов к чисто механическим суживает неподобающим образом поле исследования, по меньшей мере в области химии. И тем не менее это сведе́ние стало столь модным, что, например, у Геккеля слова «механический» и «монистический» постоянно употребляются как равнозначащие и что, по его мнению,

«современная физиология… даёт в своей области место только физико-химическим, или в широком смысле слова * механическим, силам» («Перигенезис») 287.

Называя физику механикой молекул, химию — физикой атомов и далее биологию — химией белков, я желаю этим выразить переход одной из этих наук в другую, — следовательно, как существующую между ними связь, непрерывность, так и различие, дискретность обеих. Идти дальше этого, называть химию тоже своего рода механикой, представляется мне недопустимым. Механика в более широком или узком смысле слова знает только количества, она оперирует скоростями и массами и, в лучшем случае, объёмами. Там, где на пути у неё появляется качество тел, как, например, в гидростатике и аэростатике, она не может обойтись без рассмотрения молекулярных состояний и молекулярных движений, и сама она является здесь только вспомогательной наукой, предпосылкой физики. В физике же, а ещё более в химии, не только имеет место постоянное качественное изменение в результате количественных изменений, т. е. переход количества в качество, но приходится также рассматривать множество таких качественных изменений, обусловленность которых количественным изменением совершенно не установлена. Можно охотно согласиться с тем, что современное течение в науке движется в этом направлении, но это не доказывает, что оно является исключительно правильным и что, следуя этому течению, мы до конца исчерпаем физику и химию. Всякое движение заключает в себе механическое движение, перемещение больших или мельчайших частей материи; познать эти механические движения является первой задачей науки, однако лишь первой её задачей. Но это механическое движение не исчерпывает движения

* Подчёркнуто Энгельсом. Ред.

406

вообще. Движение — это не только перемена места; в надмеханических областях оно является также и изменением качества. Открытие, что теплота представляет собой некоторое молекулярное движение, составило эпоху в науке. Но если я не имею ничего другого сказать о теплоте кроме того, что она представляет собой известное перемещение молекул, то лучше мне замолчать. Химия, по-видимому, находится на верном пути к тому, чтобы из отношения атомных объёмов к атомным весам объяснить целый ряд химических и физических свойств элементов. Но ни один химик не решится утверждать, что все свойства какого-нибудь элемента исчерпывающим образом выражаются его положением на кривой Лотара Мейера 288, что этим одним можно будет когда-нибудь объяснить, например, своеобразные свойства углерода, которые делают его главным носителем органической жизни, или же необходимость наличия фосфора в мозгу. И тем не менее «механическая» концепция сводится именно к этому. Всякое изменение она объясняет перемещением, все качественные различия — количественными, не замечая, что отношение между качеством и количеством взаимно, что качество так же переходит в количество, как и количество в качество, что здесь имеет место взаимодействие. Если все различия и изменения качества должны быть сводимы к количественным различиям и изменениям, к механическим перемещениям, то мы с необходимостью приходим к тезису, что вся материя состоит из тождественных мельчайших частиц и что все качественные различия химических элементов материи вызываются количественными различиями, различиями в числе и пространственной группировке этих мельчайших частиц при их объединении в атомы. Но до этого мы ещё не дошли.

Только незнакомство наших современных естествоиспытателей с иной философией, кроме той ординарнейшей вульгарной философии, которая господствует ныне в немецких университетах, позволяет им в таком духе оперировать выражениями вроде «механический», причём они не отдают себе отчёта или даже не подозревают, к каким вытекающим отсюда выводам они тем самым с необходимостью обязывают себя. Ведь у теории об абсолютной качественной тождественности материи имеются свои приверженцы; эмпирически её так же нельзя опровергнуть, как и нельзя доказать. Но если спросить людей, желающих объяснить всё «механическим образом», сознают ли они неизбежность этого вывода и признаю́т ли они тождественность материи, то сколько различных ответов услышим мы на этот вопрос!

Самое комичное — это то, что приравнение «материалистического» и «механического» идёт от Гегеля, который хотел

407

унизить материализм эпитетом «механический». Но дело в том, что критикуемый Гегелем материализм — французский материализм XVIII века — был действительно исключительно механическим, и по той весьма естественной причине, что в то время физика, химия и биология были ещё в пелёнках и отнюдь не могли служить основой для некоторого общего воззрения на природу. Точно так же у Гегеля заимствует Геккель перевод выражения causae efficientes через «механически действующие причины» и выражения causae finales — через «целесообразно действующие причины»; но Гегель понимает здесь под словом «механический» — слепо, бессознательно действующий, а не механический в геккелевском смысле. При этом для самого Гегеля всё это противоположение до такой степени является превзойдённой точкой зрения, что он даже не упоминает о нём ни в одном из обоих своих изложений причинности в «Логике» и затрагивает его только в «Истории философии», в тех местах, где оно выступает как исторический факт (следовательно, у Геккеля мы имеем здесь чистое недоразумение, результат поверхностности!), и совершенно мимоходом при рассмотрении телеологии («Логика», кн. III, отд. II, гл. 3), где об этом противоположении упоминается как о той форме, в которой старая метафизика формулировала противоположность между механизмом и телеологией. Вообще же он трактует указанное противоположение как давно уже преодолённую точку зрения. Таким образом, Геккель просто неверно списал у Гегеля, радуясь тому, что он здесь, как ему показалось, нашёл подтверждение своей «механической» концепции, и этим путём он приходит к тому блестящему результату, что когда естественный отбор создаёт у того или другого животного или растения какое-нибудь определённое изменение, то это происходит благодаря causa efficiens; если же это самое изменение вызывается искусственным отбором, то это происходит благодаря causa finalis! Селекционер есть causa finalis! Конечно, диалектик калибра Гегеля не мог путаться в пределах узкой противоположности между causa efficiens и causa finalis. А для теперешней стадии развития науки всей бесплодной болтовне об этой противоположности кладёт конец то обстоятельство, что мы знаем из опыта и теории, что материя и её способ существования — движение — несотворимы и, следовательно, являются своими собственными конечными причинами; между тем как у тех отдельных причин, которые на отдельные моменты времени и в отдельных местах изолируют себя в рамках взаимодействия движения вселенной или изолируются там нашей мыслью, не прибавляется решительно никакого нового определения,

408

а лишь вносящий путаницу элемент в том случае, если мы их называем действующими причинами. Причина, которая не действует, не есть вовсе причина.

NB. Материя как таковая, это — чистое создание мысли и абстракция. Мы отвлекаемся от качественных различий вещей, когда объединяем их, как телесно существующие, под понятием материи. Материя как таковая, в отличие от определённых, существующих материй, не является, таким образом, чем-то чувственно существующим. Когда естествознание ставит себе целью отыскать единообразную материю как таковую и свести качественные различия к чисто количественным различиям, образуемым сочетаниями тождественных мельчайших частиц, то оно поступает таким же образом, как если бы оно вместо вишен, груш, яблок желало видеть плод как таковой 289, вместо кошек, собак, овец и т. д. — млекопитающее как таковое, газ как таковой, металл как таковой, камень как таковой, химическое соединение как таковое, движение как таковое. Теория Дарвина требует подобного первичного млекопитающего, Promammale Геккеля 290, но должна в то же время признать, что если оно содержало в себе в зародыше всех будущих и ныне существующих млекопитающих, то в действительности оно стояло ниже всех теперешних млекопитающих и было первобытно грубым, а поэтому и более преходящим, чем все они. Как доказал уже Гегель («Энциклопедия», ч. I, стр. 199), это воззрение, эта «односторонне математическая точка зрения», согласно которой материя определима только количественным образом, а качественно искони одинакова, есть «не что иное, как точка зрения» французского материализма XVIII века 291. Она является даже возвратом к Пифагору, который уже рассматривал число, количественную определённость, как сущность вещей.